GM mosquitoes succeed at reducing dengue, company says

Genetically modified mosquitoes can put a dent in dengue cases. The first evidence of the health effects of releasing the insects into the real world comes from a year’s worth of disease data from Brazil, says biotech company Oxitec, the mosquitoes’ engineer.

Over much of the city of Piracicaba, where conventional methods of mosquito control were used, cases of the debilitating virus dropped 52 percent from mid-2015 to mid-2016. But in neighborhoods where Oxitec released GM Aedes aegypti mosquitoes as an extra control, the results were even better. Dengue cases there dropped 91 percent, from 133 to 12, according to a press statement from Oxitec, based in Abingdon, England.
SUBSCRIBE
Oxitec’s genetically modified line of Ae. aegypti mosquitoes attack a wild population by romantic deception. The GM males sire offspring with built-in self-destruct DNA that kills the new generation off in the wild before they begin to bite. This is the modern biotech twist on a decades-old strategy for controlling insects by releasing sterile males in such numbers that many females waste their reproductive effort, and a population eventually breeds itself out of existence.

In tests around the world before this, Oxitec has published or released evidence that mosquito numbers go down when the GM decoys swarm through a neighborhood. But this is the first claim that reducing those mosquitoes indeed means less disease.
That information — though not the result of a full epidemiological study — could address a gap in the debate in the Florida Keys over a proposed test release there. Opponents of introducing GM organisms, even ones pretty reliably programmed to die, have objected that there has been no evidence the measure brings any health benefit.

Brazil, where dengue and now Zika have wreaked havoc, has been much more open to the use of GM mosquitoes. In this case, Oxitec looked at the numbers of dengue cases reported mid-year to mid-year from Piracicaba’s epidemiologic surveillance program. The GM mosquito test focused on an area, called CECAP/Eldorado, of about 5,000 residents where the dengue rates were higher than in the rest of the city in 2014‒2015 — 2.66 percent incidence rate versus 0.902 percent. After a year of control measures including releasing the GM mosquitoes, the 2015‒2016 numbers show the test area now fares better than the rest of the city. Its dengue incident rate dropped to 0.24 percent compared with the municipality incidence rate of 0.437 percent.

Data on mosquito populations and diseases are rare and important, says Grayson Brown, who directs the Public Health Entomology lab at the University of Kentucky in Lexington. He wonders how far down the GM mosquitoes drove the wild population before dengue rates started dropping. (Oxitec reports that mosquito numbers dropped 82 percent, but, Brown asks, 82 percent of what?) Such a useful number turns out to be virtually unknown for most mosquito-borne diseases and their countermeasures, except for malaria, he says. Plenty of programs monitor disease outbreaks as they treat mosquitoes, but ethically and politically, “you can’t just leave a section of the city untreated.” Adding the extra measure of the GM treatments offers a way to fill that data gap.

Anemone proteins offer clue to restoring hearing loss

Understanding sea anemones’ exceptional healing abilities may help scientists figure out how to restore hearing.

Proteins that the marine invertebrates use to repair damaged cells can also repair mice’s sound-sensing cells, a new study shows. The findings provide insights into the mechanics of hearing and could lead to future treatments for traumatic hearing loss, researchers report in the Aug. 1 Journal of Experimental Biology.

“This is a preliminary step, but it’s a very useful step in looking at restoring the structure and function of these damaged cells,” says Lavinia Sheets, a hearing researcher at Harvard Medical School who was not involved in the study.
Tentacles of starlet sea anemones (Nematostella vectensis) are covered in tiny hairlike cells that sense vibrations in the water from prey swimming nearby. The cells are similar to sound-sensing cells found in the ears of humans and other mammals. When loud noises damage or kill these hair cells, the result can range from temporary to permanent hearing loss.

Anemones’ repair proteins restore their damaged hairlike cells, but landlubbing creatures aren’t as lucky. Glen Watson, a biologist at the University of Louisiana at Lafayette, wondered if anemones’ proteins — which have previously been shown to mend similar cells in blind cave fish — might also work in mammals.

Watson and colleagues mimicked traumatic hearing loss in mice hair cells by depriving them of calcium ions, which are crucial for maintaining cell structure and transmitting sounds. Within a few hours, the normally stiff, hairlike structures that detect sound “looked like spaghetti,” he says.
Researchers bathed the damaged hair cells in a cocktail of anemone repair proteins. After an hour, the cells showed remarkable improvement compared with untreated cells. Proteins rebuilt molecular tethers that bundle hair cells and act as gatekeepers for calcium ions. As a result, the cells absorbed more fluorescent dye — an indication of how well calcium flows into the cells.

What’s more, researchers identified a bevy of mice proteins that are analogs of anemones’ repair proteins. But mammalian versions work less effectively than anemone proteins, if at all. More research could point the way to one day harnessing human repair proteins, Sheets says.

Moving forward, Watson plans to investigate the ability of the anemones’ proteins to repair damaged cells in the ears of living mice. “If we could get to those hair cells before they commit to die and treat them, there’s a possibility we could reduce hearing loss,” he says.

Chinese patient is first to be treated with CRISPR-edited cells

Chinese scientists have injected a person with CRISPR/Cas9-edited cells, marking the first time cells altered with the technique have been used in humans. Researchers used the powerful gene editor to alter immune cells to fight lung cancer, Nature reports November 15.

Immune cells called CAR-T cells have already been engineered using other gene-editing technologies. A baby’s leukemia was successfully treated in 2015 with CAR-T cells engineered with gene editors known as TALENs.

Chinese researchers led by oncologist Lu You of Sichuan University in Chengdu got approval to conduct the new trial this summer. U.S. researchers have gotten clearance to begin similar clinical trials.

You’s team removed immune cells from a patient with lung cancer. They then used CRISPR/Cas9 as molecular scissors to cut and inactivate the PD-1 gene in T cells. That gene’s protein usually holds immune cells back from attacking tumors. The hope is that the edited cells will now go on the offensive and help the patient fight cancer. Researchers plan to give the patient a second dose of engineered cells, Nature reports.

The researchers’ progress with the technique could spark a space race–style biomedical competition between the United States and China, Carl June, an immunotherapist at University of Pennsylvania in Philadelphia, told Nature. “I think this is going to trigger ‘Sputnik 2.0,’” he said, hopefully improving the end product.

‘The Glass Universe’ celebrates astronomy’s unsung heroines

In the early 1880s, Harvard Observatory director Edward Pickering put out a call for volunteers to help observe flickering stars. He welcomed women, in particular — and not just because he couldn’t afford to pay anything.

At the time, women’s colleges were producing graduates with “abundant training to make excellent observers,” Pickering wrote. His belief in women’s abilities carried over when he hired staff, even though critics of women’s higher education argued that women “originate almost nothing, so that human knowledge is not advanced by their work.”
Pickering and his “harem” sure proved the critics wrong.

In The Glass Universe, science writer Dava Sobel shines a light on the often-unheralded scientific contributions of the observatory’s beskirted “computers” who helped chart the heavens. By 1893, women made up nearly half of the observatory’s assistants, and dozens followed in their footsteps.

These women toiled tirelessly, marking times, coordinates and other notations for photographic images of the sky taken nightly and preserved on glass plates — the glass universe. These women’s routine mapping of the stars gave birth to novel ideas that advanced astronomy in ways still instrumental today — from how stars are classified to how galactic distances are measured.

Using diaries, letters, memoirs and scientific papers, Sobel recounts the accomplishments of these extraordinary women, going into enough scientific detail (glossary included) to satisfy curious readers and enough personal detail to bring these women’s stories to life.

Sobel traces the origin of the glass universe back to heiress Anna Palmer Draper. The book opens in 1882 with her exulting in hosting a party for the scientific glitterati under the glowing and novel Edison incandescent lights. Her husband, Henry Draper, a doctor and amateur astronomer, had pioneered a way to “fix” the stars on glass photographic plates. The resulting durable black-and-white images revealed spectral lines that could provide hints to a star’s elements — and eventually so much more. Henry’s premature death five days after the party launched Anna’s philanthropic support of the Harvard Observatory and the creation of the glass universe.
Other women featured in the book had a more hands-on impact on astronomy. For instance, Williamina Fleming came to the United States as a maid. But Pickering soon recognized her knack for mathematics. At the observatory, she read “the rune-like lines of the spectra,” Sobel writes, noticing patterns that led to the first iteration in 1890 of the Draper stellar classification system. That system, still used today, was later refined by the observations of other women.

Henrietta Leavitt, a promising Radcliffe College astronomy student slowly going deaf, joined the staff in 1895. While meticulously tracking the changing brightness of variable stars, she noticed a pattern: The brighter a star’s magnitude, the longer it took to cycle through all its variations. This period-luminosity law, published in 1912, became crucial in measuring the distance to stars. It underpinned Edwin Hubble’s law on cosmic expansion and led to discoveries about the shape of the Milky Way, our solar system’s place far from the galactic center and the existence of other galaxies.

The story belongs, too, to Pickering and his successor, Harlow Shapley. Perhaps partly motivated by economics at a time of shoestring budgets — in 1888, women computers earned just 25cents per hour — these men not only recognized, but also encouraged and heralded the women’s talent.

Sobel takes readers through World War II and a myriad of other moments starring women: first woman observatory head; first woman professor at Harvard (of astronomy, of course); discoveries of binary stars, the prevalence of hydrogen and helium in stars, and the existence of interstellar dust. In some cases, it took male astronomers to make those findings stick — the glass universe had a glass ceiling.

After World War II, radio astronomy emerged, and “the days of the human computer were numbered — by zeros and ones,” Sobel writes. Using film to photograph the stars ended in the 1970s. But the glass universe is far from obsolete. The roughly half-million plates hold the ghosts of pulsars, quasars and other stellar phenomena not even imagined when the plates were made. They also offer the promise of more discoveries to come, perhaps by the next generation of women astronomers.

‘Waterworld’ Earth preceded late rise of continents, scientist proposes

SAN FRANCISCO — Earth may have been a water world for much of its history, a new proposal contends. Just like in the Kevin Costner movie, the continents would have been mostly submerged below sea level. Previous proposals have suggested that Earth’s land area has remained comparatively unchanged throughout much of geologic time.

But geoscientist Cin-Ty Lee of Rice University in Houston proposes that Earth’s continents didn’t rise above the waves until around 700 million years ago, when the underlying mantle sufficiently cooled. Though many scientists are unconvinced, that continental rise may have contributed to the rapid diversification of life known as the Cambrian explosion. “The Earth is cooling and that actually has manifestations that dictate how life goes,” Lee said December 15 at the American Geophysical Union’s fall meeting.
Earth’s first continental crust formed billions of years ago. Slabs of this crust “float” above the underlying mantle like icebergs, with relatively cold roots than can extend tens of kilometers into the mantle. A continent’s elevation depends, in part, on the size of its root and the density of the mantle.

Earlier in Earth’s history when the mantle was hotter and less dense, the continents sat largely below sea level with only mountains peeking above the water’s surface, Lee proposed. The cooling of the mantle over time increased the relative buoyancy of the continents and lifted the landmasses above sea level. Considering mantle cooling rates and Earth’s topography, Lee proposes that this expansion of Earth’s dry land took place around 1 billion to 500 million years ago and lasted about 100 million years.

The new land would have altered carbon and nutrient cycles, Lee suggested. These effects could help explain large shifts in Earth’s climate around this time and might have nourished the Cambrian explosion. During that time, around 540 million to 500 million years ago, forerunners of the major groups of animals — from insects to mammals — first emerged.

This tale of rising continents may be overly simplistic, said Laurent Montési, a geodynamicist at the University of Maryland in College Park. Other factors such as the mass of the continents, the amount of water in the oceans and the rate of new crust formation on the seafloor could affect sea levels relative to the continents. The idea is worth considering, he said, “but the evidence is not completely there yet.”

‘Furry Logic’ showcases how animals exploit physics

Warning: Furry Logic is not, as the title might suggest, a detailed exploration of mammals’ reasoning skills. Instead, it’s a fun, informative chronicle of how myriad animals take advantage of the laws of physics.

Science writers Matin Durrani and Liz Kalaugher cite a trove of recent (and often surprising) research findings. They draw on their backgrounds — Durrani is a physicist, Kalaugher a materials scientist — to explain how animals exploit sound, light, electricity and magnetism, among other things, in pursuit of food, sex and survival. These creatures don’t consciously use physics the way that humans design and use tools, of course, but they are evolutionary marvels nonetheless.
Peacocks, for example, produce low-frequency sounds while shimmying their tail feathers (SN Online: 04/27/16). The birds use these sounds — and not just the sight of those colorful plumes — to impress females and fend off competing males. At the other end of the sonic spectrum, some bats use stealth echolocation to track down their preferred prey. Moths targeted by these bats have sensors that can pick up these ultrasonic calls, but the bats squeak so softly that a moth can’t hear its stalker until it is less than a half-second’s flight away.

Durrani and Kalaugher let readers know when the science isn’t settled. Researchers aren’t quite sure how peahens pick up males’ infrasonic signals, for example. Scientists also haven’t figured out how the archerfish spits so precisely (SN: 10/4/14, p. 8), knocking prey off low-hanging branches above the water as often as 94 percent of the time. The submerged fish must somehow gauge the angle at which light bends as it enters the water and then accurately compensate for refraction while spewing a stream of water. Amazingly, this feat may be innate rather than learned via trial and error.

Readers need not understand the intricacies of polarized light, Earth’s magnetic field or surface tension to enjoy Furry Logic. Nor is this book an exhaustive account of the characteristics and behavior of every animal that uses such phenomena in interesting ways. There should be plenty of material for a sequel to this fascinating book.

More than one ocean motion determines tsunami size

Earthquake-powered shifts along the seafloor that push water forward, not just up, could help supersize tsunamis.

By combining laboratory experiments, computer simulations and real-world observations, researchers discovered that the horizontal movement of sloped seafloor during an underwater earthquake can give tsunamis a critical boost. Scientists previously assumed that vertical movement alone contributed most of a tsunami’s energy.

More than half of the energy for the unexpectedly large tsunami that devastated Japan in 2011 (SN Online: 6/16/11) originated from the horizontal movement of the seafloor, the researchers estimate. Accounting for this lateral motion could explain why some earthquakes generate large tsunamis while others don’t, the researchers report in a paper to be published in the Journal of Geophysical Research: Oceans.
“For the last 30 years, we’ve been moving in the wrong direction to do a good job predicting tsunamis,” says study coauthor Tony Song, an oceanographer at NASA’s Jet Propulsion Laboratory in Pasadena, Calif. “This new theory will lead to a better predictive approach than we have now.”

The largest tsunamis form following earthquakes that occur along tectonic boundaries where an oceanic plate sinks below a continental plate. That movement isn’t always smooth; sections of the two plates can stick together. As the bottom oceanic plate sinks, it bends the top continental plate downward like a weighed-down diving board. Eventually, the pent-up stress becomes too much and the plates abruptly unstick, causing the overlying plate to snap upward and triggering an earthquake. That upward movement lifts the seafloor, displacing huge volumes of water that pile up on the sea surface and spread outward as a tsunami.

These deep-sea earthquakes shift the seafloor sideways, too. The earthquake off the coast of Japan in 2011, for instance, not only lifted the ocean floor three to five meters; it also caused up to 58 meters of horizontal movement. Such lateral motion, however big, is mostly ignored in tsunami science, largely because of a 1982 laboratory study that found no connection between horizontal ground motion and wave height. The experiment used in that study, Song argues, wasn’t a properly sized-down model of the dimensions of the seafloor and overlying ocean. If lateral motion takes place on a sloped segment of the seafloor, he thought, then the shift can push large volumes of water sideways and add momentum to the budding tsunami.

Using two wave-making machines at Oregon State University in Corvallis, Song and colleagues revisited the decades-old experiment. Oarlike paddles pushed water upward and outward in some tests and just upward in others. Adding horizontal motion caused higher waves than vertical motion alone, the researchers found.

By combining the experimental results with a new tsunami computer simulation that incorporates lateral movement, the researchers could account for the unusual size of the 2004 Indian Ocean tsunami. That tsunami, one of the worst natural disasters on record, was bigger than uplift alone can explain.
Using GPS sensors to measure the horizontal movement of the seafloor during an earthquake will enable more accurate tsunami forecasts before the wave is spotted by ocean buoys, Song proposes.

The new work makes a convincing case that horizontal motion contributes to tsunami generation, says Eddie Bernard, a tsunami scientist emeritus at the National Oceanic and Atmospheric Administration’s Center for Tsunami Research in Seattle. But just how much that movement contributes to a tsunami’s overall height is unclear. It could be much less than Song and colleagues predict, he says.

Other seafloor events that can follow a large earthquake — such as huge numbers of water-displacing landslides — could also boost a tsunami’s size. Until all of the factors are known, Bernard says, tsunami forecasters will probably be best off doing what they do now: waiting for a tsunami to form after an earthquake before predicting the wave’s size and trajectory.

Brains encode faces piece by piece

A monkey’s brain builds a picture of a human face somewhat like a Mr. Potato Head — piecing it together bit by bit.

The code that a monkey’s brain uses to represent faces relies not on groups of nerve cells tuned to specific faces — as has been previously proposed — but on a population of about 200 cells that code for different sets of facial characteristics. Added together, the information contributed by each nerve cell lets the brain efficiently capture any face, researchers report June 1 in Cell.
“It’s a turning point in neuroscience — a major breakthrough,” says Rodrigo Quian Quiroga, a neuroscientist at the University of Leicester in England who wasn’t part of the work. “It’s a very simple mechanism to explain something as complex as recognizing faces.”

Until now, Quiroga says, the leading explanation for the way the primate brain recognizes faces proposed that individual nerve cells, or neurons, respond to certain types of faces (SN: 6/25/05, p. 406). A system like that might work for the few dozen people with whom you regularly interact. But accounting for all of the peripheral people encountered in a lifetime would require a lot of neurons.

It now seems that the brain might have a more efficient strategy, says Doris Tsao, a neuroscientist at Caltech.

Tsao and coauthor Le Chang used statistical analyses to identify 50 variables that accounted for the greatest differences between 200 face photos. Those variables represented somewhat complex changes in the face — for instance, the hairline rising while the face becomes wider and the eyes becomes further-set.

The researchers turned those variables into a 50-dimensional “face space,” with each face being a point and each dimension being an axis along which a set of features varied.
Then, Tsao and Chang extracted 2,000 faces from that map, each linked to specific coordinates. While projecting the faces one at a time onto a screen in front of two macaque monkeys, the team recorded the activity in single neurons in parts of the monkey’s temporal lobe known to respond specifically to faces. All together, the recordings captured activity from 205 neurons.

Each face cell was tuned to one of the 50 axes previously identified, Tsao and Chang found. The rate at which each cell sent electrical signals was proportional to a given face’s coordinate position along an axis. But a cell didn’t respond to changes in features not captured by that axis. For instance, a cell tuned to an axis where nose width and eye size changed wouldn’t respond to changes in lip shape.
Adding together the features conveyed by each cell’s activity creates a picture of a complete face. And like a computer creating a full-color display by mixing different proportions of red, green and blue light, the coordinate system lets a brain paint any face in a spectrum.

“It was a total surprise,” Tsao says. Even when the faces were turned in profile, the same cells still responded to the same features.

Tsao and Chang were then able to re-create that process in reverse using an algorithm. When they plugged in the activity patterns of the 205 recorded neurons, the computer spat out an image that looked almost exactly like what they had shown the monkeys.

“People view neurons as black boxes,” says Ed Connor, a neuroscientist at Johns Hopkins University who wasn’t part of the study. “This is a striking demonstration that you can really understand what the brain is doing.”

Elsewhere in the brain, though, neurons don’t use this facial coordinate system. In 2005, Quiroga discovered individual neurons attuned to particular people in the hippocampus, a part of the brain involved in memory. He found, for instance, a single neuron that fired off messages in response to a photo of Jennifer Aniston or conceptually related images, like her name written out or a picture of her Friends costar Lisa Kudrow.

The new results fit well into that picture, Tsao and Quiroga agree. Tsao compares her system to a GPS for facial identity. “These cells are coding the coordinates. And you can use these coordinates for anything you want. You can build a specific lookup table that codes these into specific identities — like Barack Obama, or your mother.”

Quiroga’s hippocampal cells, just a few neural connections away, are like the output of that table — a sort of speed dial for people and concepts previously encountered.

The different coding strategies might be tied to differences in what these brain areas do. “When we remember things, we forget details but we remember concepts,” Quiroga says. But for telling faces apart, and especially for processing unfamiliar faces, “details are key.”

In 1967, researchers saw the light in jaundice treatment

Premature babies, who often develop jaundice because of an excess of bile pigment called bilirubin, can be saved from this dangerous condition by the use of fluorescent light.… The light alters the chemistry of bilirubin so it can be excreted with the bile. Exchange transfusion is the usual treatment when jaundice occurs but this drastic procedure carries a … risk of death. —Science News, June 17, 1967

Update
Preemies aren’t the only babies at risk for jaundice. About 60 percent of full-term infants also develop the condition. Severe cases can cause brain damage if untreated. But today, some researchers warn that light therapy, now widely used, may not work for babies whose bilirubin levels are very high. And studies have begun to suggest a link between the therapy and certain childhood cancers (SN Online: 1/30/15). Though the risk of developing cancer is small, doctors should be cautious about prescribing the treatment, researchers wrote in 2016 in Pediatrics.

How spiders mastered spin control

A strange property of spider silk helps explain how the arachnids avoid twirling wildly at the end of their ropes.

Researchers from China and England harvested silk from two species of golden orb weaver spiders, Nephila edulis and Nephila pilipes, and tested it with a torsion pendulum. The device has a hanging weight that rotates clockwise or counterclockwise, twisting whatever fiber it hangs from. When a typical fiber is twisted, the weight spins back and forth around an equilibrium point, eventually returning to its original orientation.
But unlike several fibers the scientists tested — copper wires, carbon fibers and even human hair — the spider silk deformed when twisted. That distortion changed the silk’s equilibrium point and cut down on the back-and-forth spinning, the scientists report in the July 3 Applied Physics Letters. Eventually, scientists might design spin-resistant ropes for mountain climbers, who, like spiders, should avoid doing the twist.