How good is DJ Rodman? Son of Dennis Rodman to play with Bronny James at USC

Three days after Bronny James revealed that he had committed to USC, the Trojans have landed another son of an NBA great.

DJ Rodman, the son of five-time NBA champion Dennis Rodman, announced on Tuesday that he will transfer to USC for the 2023-24 season.

Rodman played four seasons at Washington State. He will use his extra year of eligibility to join a USC team that is loading up on talent.

Just how good is Rodman? And what role could he play for the Trojans?

How good is DJ Rodman?
Rodman was a reliable starter in 30 out of 31 games for Washington State this past season. He is coming off his most impactful year, posting 9.6 points, 5.8 rebounds, 1.4 assists and 0.7 steals while shooting 38.1 percent from beyond the arc in 2022-23.

Rodman scored in double figures in 12 contests this past year, including a 23-point performance against Eastern Washington in the NIT. He corralled double-digit rebounds in four games and snagged at least two steals in eight games.

Rodman plays on the wing, but he competes on the defensive end and on the glass — just like his father. He's a versatile defender who will take on perimeter assignments and battle big men in the post.

He'll create second-chance opportunities with a nose for the ball as an offensive rebounder, and he's capable of stretching the floor with an improved 3-point shot.

Rodman will add depth to a reloaded USC roster that should compete for a Pac-12 championship next season.

DJ Rodman college stats
Rodman played 111 games over four seasons at Washington State. He served as a role player over his first three seasons before being promoted to the starting lineup for his senior season.

You can find his career averages below:

21.7 minutes per game
5.5 points per game
4.0 rebounds per game
0.9 assists per game
0.4 steals per game
0.2 blocks per game
39.8 percent FG
35.2 percent 3PT
77.6 percent FT
USC roster for 2023, including DJ Rodman and Bronny James
Name Height Position Class Hometown High School
Isaiah Collier 6-4 G FR Marietta, Ga. Wheeler HS
Bronny James 6-3 G FR Los Angeles, Calif. Sierra Canyon HS
Arrinten Page 6-9 F FR Marrieta, Ga. Wheeler HS
Kobe Johnson 6-6 F JR Milwaukee, Wis. Nicolet HS
Vincent Iwuchukwu 7-1 F SO San Antonio, Texas Southern Calif. Academy
Oziyah Sellers 6-5 G SO Hayward, Calif. Southern Calif. Academy
Boogie Ellis 6-3 G SR San Diego, Calif. Mission Bay HS
Zach Brooker 6-0 G SR Calabasas, Calif. Sierra Canyon HS
Joshua Morgan 6-11 F SR Sacramento, Calif. Sheldon HS
Harrison Hornery 6-10 F JR Toowoomba, Australia Mater Dei HS
Kijani Wright 6-9 F SO Los Angeles, Calif. Sierra Canyon HS
DJ Rodman 6-6 F SR Newport Beach, Calif. JSerra Catholic HS
Did LeBron James and Dennis Rodman play together?
No, they did not.

Rodman retired after the 1999-00 season. James was drafted in 2003, making his NBA debut at the start of the 2003-04 season.

Zika may not be the only virus of its kind that can damage a fetus

Zika virus may not be the black sheep of the family. Infections with either of two related viruses also cause fetal defects in mice, researchers find.

Some scientists have speculated that Zika’s capacity to harm a fetus might be unique among its kind, perhaps due to a recent change in the virus’s genetic material (SN: 10/28/17, p. 9). Others have argued that perhaps this dangerous ability was always there. It just wasn’t until the 2015–2016 epidemic in the Western Hemisphere that enough pregnant women were affected for public health researchers to identify the association with fetal defects (SN: 12/24/16, p. 19).
But new work suggests this capacity is not Zika’s alone. Pregnant mice infected with West Nile or Powassan virus — both flaviviruses, like Zika — also showed fetal harm. Over 40 percent of these infected fetuses died. But among pregnant mice infected with one of two other mosquito-borne viruses unrelated to Zika, all of the fetuses survived, scientists report online January 31 in Science Translational Medicine.

The research underscores that “many viruses, including some similar to Zika, can infect the placenta and the cells of the baby,” says George Saade, an obstetrician-gynecologist and cell biologist at the University of Texas Medical Branch at Galveston. “This list keeps growing and highlights the risks from viruses that we are not very familiar with.”

Like Zika, West Nile virus and Powassan virus are neurotropic, meaning these pathogens target nerve cells. Both viruses can cause inflammation of the brain or of the membranes that surround the brain. West Nile is transmitted to humans by mosquitoes that have bitten infected birds. From 1999 to 2016, there were more than 46,000 cases reported to the U.S. Centers for Disease Control and Prevention. Powassan, spread by ticks who have fed on infected rodents, is less widespread; only 98 cases were reported from 2007 to 2016, mostly in the Northeast and Great Lakes area.

Jonathan Miner, a virologist at the Washington University School of Medicine in St. Louis, and his colleagues conducted some of the initial work in mice that demonstrated that Zika could harm fetuses (SN: 6/11/16, p. 15). The new study tests the effects of four other viruses: the two flaviviruses and two alphaviruses, chikungunya and Mayaro, which also have led to outbreaks in Zika-affected areas.
The researchers infected 14 mice early in their pregnancies with one of the four viruses. By late pregnancy, 12 out of 30 fetuses from West Nile–infected mice had died, and half of the 16 fetuses from Powassan-infected mice had died. All of the fetuses from mice infected with chikungunya and Mayaro virus survived. West Nile virus and Powassan virus also replicated, or multiplied, more efficiently than the alphaviruses in lab samples of human placental tissue.

Zika, West Nile and Powassan share similarities in their genetic information, Miner says. “So there may be certain features of those virus genes and proteins in that particular family that confers this ability to infect certain cell types.” But scientists don’t understand fully what those features are yet, he says.

While this is the first study comparing the effects in mice of these mosquito-transmitted and tick-transmitted viruses in parallel, Miner says, past studies have raised the possibility of fetal infections with other flaviviruses besides Zika. A 2006 study of 77 pregnant women infected with West Nile virus reported that two had infants with microcephaly, the birth defect lately associated with Zika that results in unusually small and damaged brains.

In general, examining the potential effects of other flaviviruses on pregnant women and their developing fetuses is difficult, because outbreaks have been sporadic and less widespread than with Zika. It’s possible that cases in humans “could go largely unnoticed if we don’t look for them,” Miner says.

A blood test could predict the risk of Alzheimer’s disease

A new blood test might reveal whether someone is at risk of getting Alzheimer’s disease.

The test measures blood plasma levels of a sticky protein called amyloid-beta. This protein can start building up in the brains of Alzheimer’s patients decades before there’s any outward signs of the disease. Typically, it takes a brain scan or spinal tap to discover these A-beta clumps, or plaques, in the brain. But evidence is growing that A-beta levels in the blood can be used to predict whether or not a person has these brain plaques, researchers report online January 31 in Nature.
These new results mirror those of a smaller 2017 study by a different team of scientists. “It’s a fantastic confirmation of the findings,” says Randall Bateman, an Alzheimer’s researcher at Washington University School of Medicine in St. Louis, who led the earlier study. “What this tells us is that we can move forward with this [test] approach with fairly high confidence that this is going to pan out.”

There’s currently no treatment for Alzheimer’s that can slow or stop the disease’s progression, so catching it early can’t currently improve a patient’s outcome. But a blood test could help researchers more easily identify people who might be good candidates for clinical trials of early interventions, says Steven Kiddle, a biostatistician at the University of Cambridge, who wasn’t part of either study.

Creating such a test has been challenging: Relatively little A-beta floats in the bloodstream compared with how much accumulates in the brain. And many past studies haven’t found a consistent correlation between the two.

In the new study, researchers used mass spectrometry, a more sensitive measuring technique than used in most previous tests, which allowed the detection of smaller amounts of the protein. And instead of looking at the total level of the protein in the blood, the team calculated the ratios between different types of A-beta, says coauthor Katsuhiko Yanagisawa, a gerontologist at the National Center for Geriatrics and Gerontology in Obu, Japan.
He and his colleagues analyzed brain scans and blood samples from a group of 121 Japanese patients and a group of 252 Australian patients. Some participants had Alzheimer’s, some didn’t, and some had mild cognitive impairments that weren’t related to Alzheimer’s.

Using the ratios, the researchers found that they could discriminate between people who had A-beta plaques in the brain and those who didn’t. A composite biomarker score, created by combining two different ratios, predicted the presence or absence of A-beta plaques in the brain with about 90 percent accuracy in both groups of patients, the researchers found.

The new results are promising, Kiddle says, but the test still needs more refining before it can be used in the clinic. Another wild card: the cost. It’s still not clear whether the blood test will be more affordable than a brain scan or a spinal tap.

When tickling the brain to stimulate memory, location matters

BOSTON — Conflicting results on whether brain stimulation helps or hinders memory may be explained by the electrodes’ precise location: whether they’re tickling white matter or gray matter.

New research on epilepsy patients suggests that stimulating a particular stretch of the brain’s white matter — tissue that transfers nerve signals around the brain — improves performance on memory tests. But stimulating the same region’s gray matter, which contains the brain’s nerve cells, seems to impair memory, Nanthia Suthana, a cognitive neuroscientist at UCLA, reported March 25 at a meeting of the Cognitive Neuroscience Society.
A groundbreaking study by Suthana and colleagues, published in 2012 the New England Journal of Medicine, found that people performed better on a memory task if their entorhinal cortex — a brain hub for memory and navigation — was given a low jolt of electricity during the task. But subsequent studies stimulating that area have had conflicting results. Follow-up work by Suthana suggests that activating the entorhinal cortex isn’t enough: Targeting a particular path of nerve fibers matters.

“It’s a critical few millimeters that can make all the difference,” said Suthana.

The research underscores the complexity of investigations of and potential treatments for memory loss, said Youssef Ezzyat, a neuroscientist at the University of Pennsylvania. Many variables seem to matter. Recent work by Ezzyat and colleagues found that the kind of brain activity during stimulation is also important, as is the precise timing of the stimulation (SN: 3/31/2018, p.16).

Suthana and her colleagues worked with 25 people with epilepsy who had electrodes already implanted in the brain for controlling seizures. Some people’s electrodes were in the entorhinal cortex’s gray matter, and some were in its white matter fibers, which extend to the hippocampus, an area known for its role in memory. Study participants received a low current of electricity while performing a memory task such as learning lists of words, names of objects (for example, “chair” or “cat”) or recognizing particular faces. Participants were then distracted with another task and then had to recall what they had learned previously.
People whose electrodes were stimulating white matter did better on the memory tasks, the researchers discovered. Stimulating gray matter seemed to have a detrimental effect, though there were too few participants to determine whether or not the impairment results were a fluke.

Deep brain stimulation has been heralded as a possible treatment for ills from obesity to obsessive-compulsive disorder to traumatic brain injury. But studies often rely on patients who have electrodes implanted for something other than memory so it can take years and collaborations among several institutions to collect enough data to see something meaningful. The size of electrode, its exact location, the amount of current delivered and other factors may matter more than researchers have recognized. But the devil may be in these details, which need to be noted as research unfolds, Suthana said.

“This is an opportunity as a field for us to adopt common guidelines and methods of reporting so we can better understand what’s happening,” she said.

The truth about animals isn’t always pretty

Nearly 2,000 years ago, Pliny the Elder reported that hippopotamuses find relief from overeating by piercing their skin in a hippo version of bloodletting. Eventually, scientists learned that the oozing red stuff Pliny described isn’t even blood but a secretion that may have antibacterial and sun-blocking properties. While chasing down the truth for herself, Lucy Cooke scooped the goo from a hippo and smeared it on her own skin — if nothing else, her hand was “noticeably silkier,” she writes in The Truth About Animals.
Cooke, a zoologist and documentary filmmaker, has a storehouse of such tales of animal adventure. She’s also the founder of the Sloth Appreciation Society, whose motto is “Being fast is overrated.” That motto gives a glimpse into her sense of humor, which shines through page after page, and her affinity for misunderstood creatures. Cooke battles the notion that sloths are lazy or stupid just because they’re slow-moving. In her book, she set out to, as she writes, “create my very own menagerie of the misunderstood.”

And quite a menagerie it is. Each chapter takes on a different animal — bats, storks, vultures and pandas, among others — long shrouded in myth or misconception. Some, like bats, are unfairly maligned; others are adored despite shocking behavior, such as Adélie penguins, whose sex lives were considered so depraved that, in 1915, London’s Natural History Museum boldly marked a paper about the birds’ mating behavior as “Not for Publication.”

In many cases, science created or perpetuated myths before eventually debunking them. Among the ludicrous ideas once taken as fact: Beavers escape hunters by chewing off their own testicles and dropping them as a distraction. To explain where birds disappear in winter, Aristotle once posited that they transform into different species.
Even hard-core animal lovers will find surprises in these histories. I knew, for instance, that the long-running mystery over European and American eels’ spawning sites eventually led to the North Atlantic’s Sargasso Sea (SN Online: 4/13/17). But I had no idea that Sigmund Freud was among the many who tried to solve another eel conundrum: where the fish hide their gonads. After disemboweling hundreds of eels to find their testes, Freud threw up his hands and eventually moved on to study the human psyche, perhaps slippery enough.

In the end, the history of zoology reveals as much about our human foibles as about the animals we study. And this book will leave readers more enlightened about both.

Sheets of tiny bubbles could bring a sense of touch to virtual reality

PHOENIX — High-tech attire that would give users the sensation of being pushed, pinched or poked could someday make virtual realities feel as real as they look.

Today’s VR systems rely heavily on goggle-generated visual displays to transport users to simulated worlds. But superthin, shape-shifting sheets worn as sleeves or built into other garments could provide gamers with tactile feedback that makes virtual realities more immersive.

The new device, described April 5 at the Materials Research Society spring meeting, contains a grid of tiny, inflatable bubbles, sandwiched between two soft, stretchy silicone films. When one of these bubble wrap–like sheets is placed against a user’s skin, inflating different air pockets by different amounts at different speeds can make a gamer feel like she’s been grabbed around the wrist or patted on the back.
Some previously developed hand- or finger-worn devices have allowed wearers to feel or manipulate virtual objects. But clothing embedded with smart silicone skins could make VR gaming more of a full-body experience.

Each air pocket on the sheet is coated with a liquid metal sensor that tracks how much that bubble is distended, which helps regulate the device’s shape-shifting. Those sensors also detect indentations in the bubbles, so these sleeves could work as touch pad game controllers, too, says study coauthor Matthew Robertson, a roboticist at École Polytechnique Fédérale de Lausanne in Switzerland.

Currently, plastic tubes feed air into the device from an external pump. “Our ultimate goal is to get rid of all the tubes,” Robertson says. He imagines future versions of these VR sleeves fitted with tiny tanks of compressed gas to inflate the air bubbles.

Fossils sparked Charles Darwin’s imagination

Charles Darwin famously derived his theory of evolution from observations he made of species and their geographic distributions during his five-year voyage around the world on the H.M.S. Beagle. But in the introduction of On the Origin of Species, the naturalist also cites another influence: the thousands of fossils that he collected on that trip. Darwin’s Fossils is paleobiologist Adrian Lister’s account of that little-appreciated foundation of evolutionary theory.

While sailors on board the Beagle charted the coastal waters of South America (the actual purpose of the expedition), Darwin explored the shore and rambled inland on excursions that sometimes lasted weeks. The fossils he unearthed — some relatively fresh, others millions of years old — have tremendous significance in the history of science, Lister contends.
Many of the species Darwin discovered in the fossils were previously unknown to science, including several giant ground sloths, compact car–sized relatives of armadillos called glyptodonts (SN Online: 2/22/16) and ancient kin of horses and elephants. Because many of those animals were apparently extinct — but just as apparently related to species still living in the region — Darwin concluded the fossils were strong evidence for the “transmutation,” or evolution, of species. This evidence was all the more convincing to him, Lister suggests, because he had unearthed the fossils himself. He saw firsthand the fossils’ geologic context, which enabled him to more easily infer how species had changed through time.

Copiously illustrated and suitable for general readers as well as the science savvy, Darwin’s Fossils is a quick, easy read that provides a fascinating overview of the naturalist’s wide-ranging fieldwork during the Beagle voyage. His insights from fossils went beyond just biological evolution. Darwin’s studies of coral reefs (the mineralized parts of which are, after all, huge fossils) encircling islands in the Pacific and Indian oceans led him to theorize correctly how such reefs form. And his observations of strata containing marine fossils thousands of meters up into the Andes led to an improved understanding of how geologic forces sculpt the world.

Pumping water underground for power may have triggered South Korean quake

Injecting fluid into the ground for geothermal power generation may have caused the magnitude 5.5 earthquake that shook part of South Korea on November 15, 2017. The liquid, pumped underground by the Pohang power plant, could have triggered a rupture along a nearby fault zone that was already stressed, two new studies suggest.

If it’s confirmed that the plant is the culprit, the Pohang quake, which injured 70 people and caused $50 million in damages, would be the largest ever induced by enhanced geothermal systems, or EGS. The technology involves high-pressure pumping of cold water into the ground to widen existing, small fractures in the subsurface, creating paths for the water to circulate and be heated by hot rock. The plant then retrieves the water and converts the heat into power.
Researchers examined local seismic network data for the locations and timing of the main earthquake, six foreshocks and hundreds of aftershocks to determine whether the temblors might have been related to fluid injections at the Pohang plant. Almost all of the quakes originated just four to six kilometers below surface points that were within a few kilometers of the plant, report geologist Kwang-Hee Kim of Pusan National University in South Korea and colleagues online April 26 in Science. These factors, combined with the lack of seismic activity in the region before the injections, suggest the injections were to blame for the quakes, the researchers found.
Another team led by seismologist Francesco Grigoli of ETH Zurich in Switzerland used the same methodology but analyzed data from regional and international, rather than local seismic stations. The researchers came to a similar conclusion
in a second paper published online April 26 in Science . These findings could be a “game changer” for the geothermal industry, prompting a reevaluation of the dangers associated with EGS, Grigoli and colleagues note.
Previous studies suggest that induced quakes can be closely linked to how much fluid is injected into the ground, whether for fracking (SN Online: 1/18/18), wastewater disposal (SN: 8/10/13, p. 16) or EGS. The higher the volume, the stronger the associated quakes as fluid injections increase subsurface pressures and make it easier for fractures to slip, researchers say. In the United States, the largest known human-induced earthquake, a magnitude 5.7 temblor in Oklahoma in 2011, was triggered by injections totaling some 20 million tons of wastewater from oil drilling.

The largest quake previously known to be triggered by EGS was a magnitude 3.4 temblor in Basel, Switzerland, one of a series of quakes that ultimately led to the shuttering of a geothermal power plant there.

Researchers initially believed that the injected volumes were too small to cause much shaking. The Pohang plant began injecting water in early 2016, putting a total of 12,800 cubic meters into the ground before the 2017 quake. Early quakes were small: Kim and colleagues found that each pulse of injected water was followed by a series of smaller quakes a few days later. But as the total volume in the subsurface increased with each injection, the quakes also grew a bit stronger, the team reported, suggesting that even a small increase in underground pressure can cause certain faults to rupture, depending on the structure of the fault zones.
The South Korean government is currently doing its own investigation into whether the November 15 quake was linked to EGS activity, or influenced by natural seismic activity, says Stanford University geologist William Ellsworth, a member of an international group advising the investigation. Operations at the plant are suspended until the investigation is completed, expected to be by the end of the year or early next year.

The country sits atop a number of fault lines and has had several powerful earthquakes, some as large as magnitude 7, in the last few hundred years. Seismic activity has been low since 1905. But some research suggests the magnitude 9 earthquake in Tohoku, Japan, in 2011 may have increased subsurface stress in the nearby Korean peninsula, causing an uptick in its seismicity.

“It’s still a vigorous scientific debate,” Ellsworth says. “This earthquake provides an unusual opportunity to understand much more about the connection between injections and the triggering of an earthquake.”

FDA approves the first smallpox treatment

As bioterrorism fears grow, the first treatment for smallpox has been approved.

Called tecovirimat, the drug stops the variola virus, which causes smallpox, from sending out copies of itself and infecting other cells. “If the virus gets ahead of your immune system, you get sick,” says Dennis Hruby, the chief scientific officer of pharmaceutical company SIGA Technologies, which took part in developing the drug. “If you can slow the virus down, your immune system will get ahead.”
An advisory committee to the U.S. Food and Drug Administration unanimously recommended approval of tecovirimat, or TPOXX, on May 1. The FDA announced the approval July 13.

Unchecked, smallpox kills about 30 percent of people infected and leaves survivors with disfiguring pox scars. Between 300 million and 500 million people died of smallpox in the 20th century before health officials declared the disease eradicated in 1980 after a worldwide vaccination campaign. For research purposes, samples of the virus remain in two locations — one in the United States, the other in Russia.
People haven’t been routinely vaccinated against the disease since the 1970s. So “it would be catastrophic if it were to reappear accidently or in the case of a bioweapon attack,” says molecular virologist Robin Robinson. He is the former director of the Biomedical Advanced Research and Development Authority, a federal agency that’s focused on protecting against biological and other threats and that assisted in the drug’s development.

Fears that the disease could be used as a biological weapon have risen in light of anthrax attacks and other terrorist acts of this century. The National Institute of Allergy and Infectious Diseases classifies smallpox as a Category A priority pathogen, because the disease spreads easily from person to person and can be highly fatal.

Researchers tested how well the drug stops smallpox in animals, while trials to determine the safety and dose of the drug were conducted in people. In monkeys and rabbits infected with viruses related to smallpox, tecovirimat prevented around 90 percent of the animals from dying, says SIGA CEO Phil Gomez. Nearly all of the animals that did not receive the drug died.

A smallpox infection does not produce symptoms right away. After 10 to 14 days, a fever and rash occurs — that’s when a person is most contagious — followed by the formation of poxes. The drug is meant to be taken at the fever and rash stage. Data from the animal studies, Hruby says, suggest that few poxes will form once the drug is taken and patients will heal more quickly.

“Preparing for disasters comes in different shapes and forms,” says Grant McFadden, who studies poxviruses at Arizona State University in Tempe and was not involved with the development of tecovirimat. “This is preparing for an infectious disease disaster.” In the event that smallpox reappears, “you need drugs to actually block the progression of the disease.”

Two million treatments of TPOXX are already in the U.S. Strategic National Stockpile of drugs and supplies for public health emergencies, Gomez says, a move allowed under emergency preparedness legislation. FDA approval of tecovirimat would open the door to studying the drug for other uses (such as a treatment for related poxviruses), assure the supply of the drug and encourage other countries to place the drug in their emergency stocks.

No one can predict if or when a pox virus is going to pop up and cause problems, says Hruby. With this drug, “I’d like to think you can sleep better at night.”

NASA gets ready to launch the first lander to investigate Mars’ insides

Mars is about to get its first internal checkup. The InSight lander, set to launch at 7:05 a.m. EDT on May 5 from Vandenberg Air Force Base in California, will probe the Red Planet’s innards by tracking seismic waves and taking its temperature.

Finding out what Mars’ interior is like could help scientists learn how the Red Planet formed 4.5 billion years ago, and how other rocky planets, including Earth, might have formed too. “It’s going to fill in some really big holes in our understanding of the universe,” says principal investigator Bruce Banerdt, a geophysicist at NASA’s Jet Propulsion Laboratory in Pasadena, Calif.
Mars is the perfect planet for this project: It’s large enough to be geologically interesting and, like the Earth, has a core and mantle beneath its crust. But the Red Planet isn’t so large and geologically active that its crust is constantly changing and erasing evidence of what it was like in the past.

“It’s kind of the Goldilocks planet,” Banerdt says.

InSight — short for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport — was originally scheduled to launch in March 2016, but was pushed back because of equipment failure (SN Online: 12/23/15).

Assuming it reaches the surface of Mars in November, as planned, InSight will investigate the planet thousands of kilometers below the surface using two main instruments: a seismometer and a heat probe.
The seismometer will measure seismic waves rippling through the planet, similar to the way geologists study the interior of the Earth (SN: 9/16/17, p. 11). These waves move at different speeds through different materials, so tracking the rate at which the waves move can help scientists paint a detailed picture of Mars’ insides.

“We have spent a lot of effort scratching at the surface of Mars, but InSight is one of the first missions really dedicated to exploring the other 99.9999 percent of Mars,” says planetary scientist Matthew Siegler of the Planetary Science Institute, based in Dallas, who is not part of the InSight team. “We want to know what it is truly made of, not just the thin candy coating.”

Thanks to previous measurements of Mars’ gravity, astronomers expect to find a metallic core and a relatively dense mantle, but aren’t sure how large or dense each layer might be. Measuring these details precisely “will make a lot of models go into the trash,” Banerdt says.

Many of the Earth’s seismic waves are created by earthquakes rippling along tectonic plate boundaries. Mars lacks plate tectonics, but it still has smaller “Marsquakes,” triggered by the crust’s cooling and contraction. That process releases “little cracks and pops,” Banerdt says, which “on a planetary scale are quakes that can shake down buildings.”

The seismometer will also sense seismic waves rippling from Martian surface impacts, as well as gravitational tugs from Mars’ moon Phobos that periodically make the planet bulge by less than a centimeter. Measuring that bulging may yield information about the size and squishiness of the core, which in turn could help explain why Mars lost its magnetic field (SN Online: 3/27/18).
In addition to measuring faint ground vibrations, the seismometer is sensitive enough to pick up winds, temperature shifts and leftover magnetism in the rocks. So InSight’s seismometer will also carry a weather station and a magnetometer to make sure the team can subtract out signals that don’t come from underground. These weather measurements could potentially be used to plan future human missions to Mars (SN: 1/20/18, p. 22) .
To check Mars’ internal temperature, InSight will dig into the surface and measure every half-meter down to 5 meters. Temperature changes over that small distance will probably be tiny. But they could be used to extrapolate to further depths and to calculate how much heat is coming up from inside, revealing how geologically active Mars is. More heat means more activity.

The spacecraft itself might look familiar: The design was reused from the 2008 Phoenix lander, which found water ice in Mars’ polar regions during its five-month mission (SN: 6/21/08, p. 10). But InSight has larger solar panels, which should allow it to measure seismic signals for at least one Martian year (about two Earth years). The lander will touch down near Mars’ equator to get extra sunlight.

InSight will be the first interplanetary mission to launch from California. The spacecraft will spend several months in transit. Once it lands, a robotic arm will pick up each of the instruments and gently place them on the ground over the following month or two.

“From then on, we’re very quiet — these instruments need to make their measurements in as quiet a situation as possible,” Banerdt says. “Nothing much happens after that, except we get great science.”

The mission will also test a new way to relay that data back to Earth. InSight will carry the first interplanetary CubeSats — a pair of tiny satellites called MarCO that will be dropped off in Mars’ orbit. While other existing Mars orbiters will send back much of InSight’s information, the lightweight CubeSats will be tested at the task.

“We’ve been working to get a mission like this for 25 or 30 years,” Banerdt says. “It’s really an incredible rush to be getting close to launching this thing.”

You can watch the launch coverage starting at 6:30 a.m. EDT on NASA’s website.